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The motion of an obstacle having the form of an Infinite strip and acted upon 
by a plane elastic wave was considered In [l]. This paper deals with dls- 
turbances of a field of incident wave caused by an obstacle (*). 

1. We will adopt a system of units of measurement In which the strip 
width, the density of the medium and the velocity of the transverse waves 
equal unity, so that the medium is characterized by,a single parameter y 

which Is the ratio of the transverse and lon- 

* 

gltudlnal wave velocities. 

The system of Cartesian coordinates Is cho- 

-I I 5 
sen so that the strip (Flg.1) occupies a part 
of the plane y = 0 for lz[<l,---<z<m 
and all the quantities are Independent of the 

/ 

z-coordinate; 

We will decompose the displacement field of 

OY the medium into the undisturbed field of the 
Incident wave with displacement components 

Fig. 1 ui (t - 6(x + 1) -i- 6y) and 
along the x and b, 

vi (‘t - 6 (Z + 1) + 6y) 
axes, respectively, and 

the disturbance with displacement components 
11(2, ?I, t), 7i(T, 2/Y f), which contains waves diffracted at the edges of the strip, 

“) It Is the author’s fault that Formula (4.11) on page 107 in [l] contains 
errors. The correct expression should read 

Wj (t) = 6-2~3{.II~,, (A) [Akc,), -- (1 + hvj) kiz,ol 6 (t) f 

f’,‘: A%jk;,l,St,j,~(t - 2y, I)} *vi (t - 6 - 'h) l;:ta - 

- 2l.k 3 (z),, [@,,:,,,yj - $,),) St,),, (t, 0) + k~,~$~,~,,k O)l*a (t - 2~) 

Formula (5.6) will change correspondingly 

hfj (t)= IF [I%,,), + (1 - ti vj) k~,~,] vjKc,) (- 6) “t (t) + 

+ fi-’ I@k(,), - (1 + *Vj) kc,), J “jM,,j (6) ui (’ - 28) 
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as well as those generated by motion of the strip. Rather than to describe 
the field of disturbance under consideration by the components of the dls- 
placement vecor, It 1s more convenient to present It In terms of correspond- 
ing potentials, transverse cp and longltudlna1 $‘ , bearing in mind that 

u=acp+% acp 89 
3X ay ’ V=ay-x 

(1.1) 

The boundary conditions [l] have the form 

U = - Ui (t - (x + 1) 8) + 110 (t) (I.") 

v = - vi (t - (x + 1) 6) + vg (t) + (I - 20) a (4 

for lz1<1,y=O 

where (U vo) 
Its coord(lAate 

1s the displacement vector of the strip's centrold, X, Is 
In the equilibrium position, Is the angle of rotation of 

the strip. Hence, we easily conclude, that tahe unknown disturbance Is made 
up of two parts, one describing the diffraction of the Incident wave at the 
edges of the strip which may be regarded as fixed for the purpose of compu- 
ting this portion of the disturbance (u,= vo= (Z = 0), and the other part 
describing waves generated by motion of the strip, in which case we may set 
u,= U,= 0 (after the elements of motion of the strip are computed In Cl], 
we can consider them to be given Independently of the Incident wave; for the 
same reason the mass of the strip and its moment of Inertia are not men- 
tioned In this paper). 

2. From formulas found In [l] one can derive the following expressions 
relating the double Laplace transforms of the longitudinal and transverse 
potentials to the double Laplace transforms of the jumps In stress components 
on the strip 

Qy,)o (CL PI 
‘p (q, Y, P) = [-- p2 4r2p2 _ q2 -5 sgn Y 

U(2)” !a PI 
p2 1 exp (- I Y 1 T/T’P” -0 

9 (q, Y, P) = [se Y 
T(1)O (a PI qq,,” ((77 PI 

(2.1) 

p2 -I- p2 vp2 ] eXP(- I Y I VP2 - 4’) 

where a(,)' ((I, P) and rCljO (q, p) are th e Laplace transfo?ms of the jumps of 
the normal and shear stresses respectively. The potentials are expressed In 
terms of their transforms by the Inversion formula 

ioo+c imic’ 

f (x, Y, t) = -k2 eqx i (q, Y, P) dq dp (2.2) 

where c>O and c' should be chosen so that the path of integration with 
respect to p lies entirely In the domain of regularity of f(n,v,p). Here 
the transforms are designated by the same letters as the original functions, 
the difference shown only In the arguments. The quantities T(,)"(q,p) and 
a(, "(% PI 

1 
have been computed In [l] and are given by the formulas (hkre we 

wr te down only the terms describing diffraction) 

K(1) (- 6) {eY% (-J) (d + $i-l- 
- fFJ Ktl) ((-I)‘+‘%) exp I(- I)“’ ql r. p. 7 . . . 5 rI(!)k (5) x 

k=l Y Y 

x 
(cl - *) [ck - (-ljkq / PI 

- M(L) (6) e -2PS {e-w(,) (g) (* @j-l+ 
co 

+ ; K(1) ((4 $)BXP I(-l)k+‘ql 7 . . . 1 

(2.3) 

$)k (b) x 
k=l Y 

dQC I- 
for 1 = 1 

' (51 + ') [Sk + (-l)k q/PI ’ - 

‘(1)o (Q, P) / u( (p) 

(J(2)’ (y, p) / vi (p) for 1 = 2 
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(2.4) 

(2.5) 

The square roots in the above expressions are uniform by taking the branch 
cuts in the o-plane along the segments of the real axis [i y, f m) and choos- 
ing the branch which Is positive for 0 = 0 . The functions MC,,(@) and 
I,(,, (cr) are defined only for real values of a and,are: 

Mtl, (4 = Re KC1) (0 - Q, (2.7) 

Although Expressions (2.3) are already quite complicated, 1; makes sense 
to complicate them some more In order to ascribe a clear physical meaning to 
each term. With that purpose In mind let us present the functions L(,) (a)_ 
as sums L(l), (a) f L(l), (u), where 

u2 v/o2 - 72 (1 + 72) 
-%P (a)= 2 [(I + y2) uz - 721 (“f + a) e-w(-a) 

(Q>Yb 

(5>Y) 
-%?J (4 = 

(a - 1) vu2 -T2 (1Sr2) ,_zg(_a) 
2 [(I f; r2) CP - r2] 

L(,), (a)= 
(u - 7) Vu2 - 1 (1 f r2) e_2g(_O) (0 >l) 

2 [(I + P) cf2 - r21 

(2.8) 

L(2), 6J) = 
u2 l/u2 - 1 (1 + r2) 

2 [(I + ra) (52 - r21 (1 It a) e-ag(-O) 

L(l), w = 0 (0 -CT), L(,), (4 = 0 
Now we can put n,,,, Into the form 

(01) 

(04 

$)k = x ‘(l)(r)k 

(P) 

(2-W 

where (F) Is a composite Index which gives the sequence of Indices P and 
8 of functions L , contained in each term. For Instance, when k = 3 we 
hafe 

It Is easy to see that for any k the function n(Z)k is made up of 2* 
terms. After the substitution of (2.9) Into (2.3) shd then Into (2.1), the 
potentials are expressed In the form of double sums, In which a definite 
physical meaning can be ascribed to each term. Namely, the terms containing 
k-fold integrals describe waves diffracted k + 1 times. The composite 
index (F) of functions n(l)(r,k, contained In the expressions under the lnte- 



gral signs gives the past history of the wave described by the corresponding 
term. For Instance, the index pas corresonds to a four-time diffracted 
wave, which after the first diffraction was propagated as a longltudlnal 
(potential) wave, after the second diffraction - as a transverse (solenoidal) 
wave, after third diffraction as a transverse wave and Is now longitudinal 
or transverse, depending on the potential expression In which the considered 
term Is contained. Let us note that, according to (2.8), In the multiple 
Integrals taken with respect to the arguments of the functlons~zC,j, the inte- 
gration should be carried out from 1 to 0~ , whereas with respect to the 
arguments of the functions l,(l), it should be from y to 0~ , as before. The 
terms with k - 0 represent a special case, since they describe not only 
the diffracted waves but also those reflected from the strip, and the forma- 
tion of a shadow as well. 

From the form of Expressions (2.3) It can be concluded that two systems 
of multiply diffracted waves are present. The first system contains waves 
which were first diffracted at the left edge of the strip (terms in the first 
braces In (2.3)), and the second system contains those which were first dlf- 
fracted at the right edge. There exists a simple relation between the two 
systems, which Is easily established by applying theorems of the operational 
calculLs to Formulas (2.3) and (2.1). Namely, let f(r,y,t,6) be the p;;En- 
tlal of anyone of the multiply diffracted waves of the first system; 
analogous wave of the second system Is described by the potential 

--f(--+, --y, t - 26, -4) 

The above relation does not hold true for waves with k - 0 

(2.10) 

3. In this section let us Investigate the once-diffracted and reflected 
waves. The transforms of potentials In this case are Liven by Expressions 

cp (rl7 Y7 z-4 z= 
wi (P) K(l) (G-6) 

- 
p2 l/yp2 - $72 (6 + q / p) 

K 
(I) ( 1 q + - -r __- 

exp {q - I y I J/r2ps - (IZ) -1 

K 
i ) 

(I_ 
(1) p 

-- 
exp (- ‘7 - I ?/ I VT2P” - q21 

(3.1) 

ui (P) Kc,) (b-6) 
?zn Y p2 (6 + q, p) Kc,) -7 

c ) 
q -t (3.2) 

cxp iq - I Y I VP2 - v2: - 

In computing the Inversions of (3.2) and (3.1) It Is convenient to trans- 
fer to a particular case, in which 

Ui = l,T$ (t - 6 (z i I) + 6?J), L‘i = v$,(t - l!l (z + 1) + 62/) (:;.:I) 

Here one should distinguish the symbol of the delta function from the con- 
stant which enters its argument. This Inconvenience Is caused by the fact 
that the designations adopted In [l] are used In the above expressions. The 
constants U, , V, and 6 depend on the angle of Incidence and the type of 
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wave and are: 

ci ._; __6, Vi = 6 = r/q _- 62 

for the case of a longitudinal wave, and 

(3.4) 

ui = Fi = t’l _ 62, vi c= fJ (3.5) 

for a trvlaverse wave. The potentials corresponding to this particular case 
will be designated by capital letters P and Y , One can transfer to the 
general case, In which 

Ui -- Vif (t - 1~ (~ -i- 1) + 6y), Vi = Vif (t - B (z + 1) + 63) (3.6) 

by means of Formula 
f 

(3.7) 

and analogously for Y , 
0 

Let us start with the computation of Y(x,y,t). After the substitution 
of (3.2) into (2.2) we obtain a linear combination of four inversion inte- 
grals. Consider one of them 

iw+c 

J= L 4x? 5 
-ico+c -iCOiC’ 

Here we set 
1 

J-s dz I s 
a 

C‘ = 0, p = pU. . Then 

icO+c 

(3.8) 

exp {P [a (z + I) - 1 Y 1 -fl - @I} f$,, (- 0) & dp 

aS-6 

where t(p) is the contour in the complex u-plane, which corresponds to the 
imaginary axis of the q-plane. Now we set c - 0 and decompose the integral 
with respect to 

g 
into a sum of two Integrals: from - $m to 0 ana from 

0 to tm . We 0 taln 

where l1 and La are the contours shown in Fig. 2. The same figure shows 
the branch cuts going from - y to - = 
and from 1 to 0 . 
that the function K(,) 

(Let us remember, 
(-- 0) Is regular /----_ 

/ ‘\ 
everywhere, except on the segment of the / 
real axis [-y, -=)I. If the order of / ,!m6 \, 

\ 
integration could be interchanged, the 

Im 6 

Fig. 2 Fig. 3 

Integral wlth respect to p would be elementary. To make that possible, 
the contours 2, and ta should be deformed so that 
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be positive on zI and negative on 1,. It turns out that this can be accom- 
plishee by shifting the points of Intersection of both contours with the real 
axis to the point 0 = - (x + 1)/r If (X+1)/F>.@, 

then In deform1 
where r = J(x + l)=+ $ 

and for 
the contours one ihould add the residues at-point c = -4, 

r> y also add the Integral taken along the edges of the 
branch cut from -u = - y to u = - (X + 1)/r . Then the integral (3.8) 
takes the form 

J - --H (r-l (x + 1) - 6) H (t - 19 (2 t: 1) - 1 y j 1/l - e2) M,,~ (6) t_ 

(x+1)/r 

+ f H (r-l (z + 1) - 7) H (r - t) v. p. 
s 

H(t---((z+i)--111 VI-ua”)x 

Y 

NC,) (a) 
t 

x---da- k2 dr 
s s 

Ktl) (-4 do (3.9) 

I?--a 
0 (l,'.&') (6 + a) 1% + 0 b + 1) - I Y I v/1 ---a21 

of 
of 

Here ~(7) Is the Heavislde's unit step function. We write the symbol 
principal value in front of the Integral In the second term to take care 
the possible case 6>~. 

Moreover, as In [l], 

Let us now consider the last term. The contour (z,'- 2,') Is shown In 
Flg.3. We close It in the upper and lower half-planes by semicircles of 
Infinitely large radii, as shown schematically In the figure, and thus reduce 
the Integral with respect to Q to a sum of residues at the poles. 

u = U&2 = r -2 I-- z (z -l- 1) + i 1 y I 1/e - ?I 

bearing in mind that these poles fall Inside the integration COntOurs Only 

for 7 > r . 
Thus, the last term (3.9) becomes 

Since the terms In braces are complex con ugate, 
3 

the expression under the 
Integral sign Is real, and the Integral (3.8 Is reduced to quadratures. 
However, for obtaining the asymptotic expansions In the neighborhood of the 
wave fronts,lt 1.8 convenient to transfer the last expression again to a cer- 
tain contour Integral In the a-plane. This is accomplished by a simple 
change of variables. Finally, we obtain 

J = -H (r-l (z + 1) - 0) H(t - 0 (x + 1) - Iy 1 1/l - e2) MC,) (6) + 

(x+1)/r 

++H(z+_7)H(r-t)v.p. 1 H(t-u((z+l)- 

Y 

- Nm (a) 1 Kt,) (6 da 
- I YI~I - ua)G--a- 2niLS s 8_u H(t---) (3.10) 

Here L, Is the contour passing from point 

6 = r-2 [t (z + I)- i/y ( V/t%- r21 

topolnt o=r-2[t(~+1)+ijyIl/ta] and intersecting the real axis at 

u = r-1 (5 + 1). 
The remaining three Integrals which appear In the expression for Y are 

analogous to (3.8). Thus 
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--_ 
- %----lyi 2/l--W)H(cosa++6)+ 

-j- 6) H ft - Sk- - 1 y j y’,2 - 62) -t- 

The following designations have been introduced in Formulas (3.11) and 
(3.12) : 

2” z!z t - 26, E- = r-cosa-= s-f- 1, F’I Z ?f E=FG?- 

$+ = r+ cos a+ = 1 - I, r+ = 1/(i+)’ + y2 

the Contour L,- passes from nolnt ci ==_. Cr-)-2 (& - i / ?j I dtCY (r-)2) to 
point o = (~-)-a (rj- I”_ i / y j VP - 72 (r-p), intersecting the real axis at 
a=? cos u-, 
and L,+ 

the contour L., has been defined above, and the contours L,* 
are determined in the same way as ,&- and L,-, but in terms of 

quantities designated by the sign +, 

Now it is easy to establish the physical meaning of each term .tn &xpres- 
sions (3.11) and (3.12). The first term describe the reflected longitudinal 
and transverse waves for g > 0 , an& for I/ c 0 they cancel the incident 
wave, thus securing the formation of the geometric shadow. The next two 
terms in the expressions of each potential describe cylindrical waves dif- 
fracted at the left and rlght edges of the strip, We will symbolically desig- 
nate those waves by tp’-, tp+) $s- and 
gitudinal (potential) waves, symbol s - 

ta* . (The symbol p indicates lon- 
transverse (solenoidal) waves). The 
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last two terms ln (3.11) represent the potentials of the head waves. Those 
will be designated by ts-* and t8+*. Flg.4 shows the location of fronts 
of all those waves for the time Interval 2fi<t<2y. 

4, Expressions (3.11) and (3.12) completely describe the diffraction for 
o<t<2y, I.e. up to the Instant at which the wave front f.n- reaches the 

right edge of the strl;: At that 
Instant the waves ip-p+, ip-s+, ip-s+* 
appear. In the designations of mul- 
tiply diffracted waves the sequence 
of Indices Is determined by the wave's 
history: the Index t designates the 
Incident wave, Indices P and 8 
with the - or + sign designate dlf- 
fraction at the left or right edge 
of the strip, respectively; the aster- 
isk at the Index 8 designates the 
head wave. Clearly, the Index with 
an asterisk can appear In the last 
place only, whereas the Indices with 
- or + signs alternate. Hence, It Is 
sufficient to show which of the two 

Fig. 4 
Indices with - or + signs follows the 
incident wave Index, I.e. Instead of 
@-p's_ or tp+p-s+ we wlII write 

In the general case we will write t(r-)s, t(r’)e or 
Formula (2.10) of Section 2 gives a simple relation between the 

f,(r-)p, t(F)8 and t(r+)p, t(r+)e . We should note, 
however. that the substituting ‘8, for -_6 one should write 

vice versa. Therefore, 
M 1)(6)lnstead 

we will confine ourselves c o the com- 
lon of wave potentials for i(r-)p, i(r-)s and i(r-)s*. From (2.1),(2.3) 

we obtain the expression for the transform of the wave potential 

Pi @I 
‘p= 

Pa l/FP2 - 42 
K(,) ( (--Uk+’ 5) exp [(- l)k q] V. P. s X 

A’(r) 

x ‘(l)(r)k (6) 
da, 

(51 - 6) ]ck - (--I)” q / p] 
-wY 

*i (P) 
-+(,, ((-I)“++ X 

X exp [(-l)k q] v. p. s 
%) 

‘,,,,r,k (6) 
dQ,: 

(51 - 6) [6k - (-l)k q / p] I 
X 

x exp {-- I Y I I/Tap2 - 49 (4.1) 

where k + 1 Is the multlpIlclty of diffraction, A(r) Is the domain of 
Integration which 1s determined as follows: If in the composite Index (r) 
the j-th place Is occupied by the Index p , the integration will respect to 
C, Is carried out from y to 0~ , otherwise It 1s from 1 to 0~ . 

It Is easy to verify that in the process of Inversion It Is permissible 
to perform Integration under the multiple Integral sign without restrictions. 
Moreover, the resulting Integrals are again of (3.8) type, and thus we obtain 
(again for the case In which the Incident wave has the form (3.3)) 

(-Qk K(l) (4 v. p. 
s 

n(l)(r)k* (5) .’ Kc,) (4 (J da 

%P 
51 - 6 Lip (Gk + U) v/r2 dQLUi - 

- w YK(,) (4 v. P. (4.2) 

where AcrJp IS the domain of Integration determined by conditions 

AW7l = A(r), tk F t -2 i cj > rrlr ('I( = 4%,' + y2, %l, = 1 + (-I)" s) 
j=l 
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The contour Lo, in the a-plane is defined in terms of t,, F~, ~~ in the 
same way as the contour L,- In (3 .l2) was defined In terms of t, <- and r; 
and also ii 

> 
(4.3,) 

, - 
i.e. it Is obtained from I1 
condition A 

(o(,,,~ by discarding the exponential factor. The 
i,),, c A(,.) can be written down in the form 

c . _ 
3j “jtk 

( 

&, == r, if p appears in $th place in (r) 

tj,, z 1, if s appears In jth place in (r) 

Suppose the Index p Is contained in (7) m times, and the Index s (k-m) 
times. Then, as we readily find, the wave t(F-)p appears when f = tiv + 
+ 2(k -m), as should be ex ected from !:lnematlc considerations. 

P 
For the 

potential of the wave t(r- 8 we obtain 

‘I’ (,f, y, t) = I sp !fl‘iK(l) (- 0) I-. p. 

- [--l)‘lfi/~(.‘i (- Q) \-. 1’. . (4.4) 

and the expression for the potential of the wave tjr-)s* is 

where 
E, 

cos ah. = i-1 ) 
h 

(4.6) 

the contour Lrr Is defined in terms of tkt cr, P, analogously to the con- 
tour L,_, and the domain of integration L,-, is determined by conditions 

A(,.,, c A,,,, t,q > ‘k (4.7) 

The reasons for the appearance of the factor ~(cos ar+i+ y) in Expression 

t 1 
4.5 are not obvious. Indeed, in the inversion of the kth term in Formula 
2.3 there appears a term which 1s due to the residue at point a = Cr and 

which is different from zero only for Cos a*< - Cr 
After some transformations it becomes clear that this term cancels the 

head wave which has appeared after the diffraction of the opposite edge of 
the strip, In the region shown hatched In Flg.5, and should be referred to 
(k - 1)th term, while on analogous item from the (k + l)th term should be 
added to the kth potential. The appearance of analogous factors in the 
potentials of the head waves in Formula (3.11) is due to trasfer of analo- 
gous factors from the terms with k = 1 

5. To describe the disturbances arising as a result of motion of the 
stri one could proceed from formulas for transforms (analogOUS to BormUla 
(2.37) f rom the paper Cl], but there is a shorter way available. Indeed, 
from the form of the boundary conditions (1.2) we can conclude that the dis- 
turbances generated by the translation of the strip must be the same as in 
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the case of diffraction of a longitudinal Incident wave with the displacement 
vi = -v,(t - yv) and a transverse Incident wave with the dlsDlacement 

ui = -uo(t - y) both falling normally upon 
the fired strip. It Is clear that the num- 
ber of Individual waves generated In trans- 
lation of the strip Is Identical to that 
arising in diffraction at the fixed strip. 
It Is easy to transfer from formulasdescrib- 
lng potentials of waves arising In the dlf- 
fraction of a wave of form (3.3) to the 
potentials of corresponding waves generated 
by the strip's translation 

Fig. 5 

t 

To (21 Yt t) = - 
s 

tug (t - z) @I + UfJ (t - z) O,z]dt 

@= @I(“, y”, T; Cri = 1, Vi = 0, i$ = 0) 

Q= @2(2, y, z; u, = 0, vi = 1, 6 = O)] (5.1) 

and analogously for potentials of transverse 
waves. 

@I order to transfer from formulas 
describing the diffraction of waves (3.3) of the fixed strip to thosedescrlb- 
lng the disturbance generated by the strip's rotation, It Is sufficient to 
Introduce the derivative with respect to the parameter 6. Then, It Is 
easy to verify that the corresponding expressions for the potentials must 
be of the form 

- T) @ (2, y, Z; Ui = 0, Vi = I, 6 = 0) dT 

We will not dwell on'the question of these waves In more detail since 
near the wave fronts they are asymptotically small as compa,ed to ihe dlf- 
fracted waves (namely, as Is readily seen from formulas for the strip's dls- 
placement and rotation In [l], the dlscontlnultles of these waves at the 
wave fronts, as compared to the dlscontlnultles of the diffracted waves at 
the wave fronts are lower by one order of magnitude for the case of theerIght 
angle of Incidence (#= 0), 
(for 6 # 0)). 

and by two orders of magnitude In other cases 

The formulas obtained In Section 3 to 5 are cumbersome and Inconvenient 
for practical applications. Therefore, It would be expedient to obtain 
asymptotic expressions describing the diffracted waves near their fronts and 
at large distances away from the strip. However, for that It would be neces- 
sary to Investigate a great number of particular cases which would be beyond 
the scope of the present paper. 

We would like to point out that a closely related problem of the formation 
of a crack having the shape of a strip, In a prestressed elastic medium has 
been considered by Flltman [2]. 
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