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The motion of an obstacle having the form of an infinite strip and acted upon
by a plane elastic wave was considered in [1]). This paper deals with dis-
turbances of a field of incident wave caused by an obstacle (*).

l. We will adopt & system of unlts of measurement in which the strip
wldth, the density of the medium and the veloclty of the transverse waves
equal unity, so that the medium 1s characterized by,a single parameter vy
which 1s the ratlo of the transverse and lon-
gitudinal wave velocitles.

The system of Cartesian coordinates 1s cho-

sen so that the strip (Flg.l) occupies a part
Y / Z  of the plane y =0 for |z, —o0o<lzo0
and all the quantitles are independent of the

z-coordinate:

/// We will decompose the displacement fleld of
7 the medium into the undisturbed fleld of the
incident wave with displacement components
Fig. 1 ui(t — 9@z 4+ 1) + 6y) and »; (t— O (x+ 1) - Sy)
. along the x and y axes, respectlively, and
the disturbance with displacement components
w(z, v, t), v(z,y, 1), which contains waves diffracted at the edges of the strip,

*) It is the author's fault that Formula (4.11) on page 107 in [1] contains
errors. The correct expression should read

Mj(t) = 872, (M ) (0 DMy — (14 W) ko1 8() +
17208 8 e (t — 2y, WY #vy ¢ — B — ) RZ% —

= Vikim [0V — Figyp) Siaa (6 0) + KigyS 22 (8 O)]sa (2 — 2v)
Formula (5.6) will change correspondingly
M ()= 02 [Bh 5, -+ (1 — B v)) kg0] viK (g (— B) v () +

4+ 072 [Bhygy — (1 + OV) ko] viM ) (8) v; (¢ — 28)
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Diffraction of an elastic plane wave at a massive strip 1313

as well as those generated by motion of the strip. Rather than to describe
the field of disturbance under consideration by the components of the dis-
placement vecor, it 1s more convenient to present it in terms of correspond-
ing potentials, transverse g and longitudinal § , bearing in mind that

dp _% X

“=3aTay VT o t-n
The boundary conditions (1] have the form
u= —u t—(@+ 18 + uy (@) (1.2)

— =t — @+ D))+ n @)+ (& — zo) o)
for |#]<1,y=0

where (u,, v,) 18 the displacement vector of the strip's centrold, x, is
its coordinate in the equilibrium position, o 1s the angle of rotation of
the strip. Hence, we easily conclude, that the unknown disturbance 1s made
up of two parts, one describing the diffraction of the incldent wave at the
edges of the strip which may be regarded as fixed for the purpose of compu-
ting thils portlon of the disturbance (u°= Vo= a = 0), and the other part
describing waves generated by motion of the strip, in which case we may set
u;=v,=0 (after the elements of motion of the strip are computed in [1],
we can conslider them to be glven independently of the 1ncident wave; for the
same reason the mass of the strip and its moment of lnertia are not men-
tioned in this paper).

2, From formulas found 1in [1] one can derive the following expressions
relating the double Laplace transforms of the longitudinal and transverse
potentials to the double Laplace transforms of the jumps in stress components
on the strip

97" (¢, P) 0)° (g, P)
—_— —1,— sgn |7 T e—
PVip—¢ P
Ty° (g, P) 903" (a0, P) _
o 4 @)
———=—— | exp(— 2 — 2
> szpz_qz] =1y Vp— ¢

where 03)°(q, P) and ¥’ (g, p) are the Laplace transforms of the jumps of
the normal and shear stresses respectively. The potentials are expressed in
terms of thelr transforms by the inversion formula

}eXp (— 1y VI —o
(2.1)

w(q,y,p)=[

V(g v, p) = [Sgn Yy

ic0+C ico+c’
flo,y ) = —4—1—2 S et S e™ f (g, ¥, p) dg dp 2.2
T —ico+¢ —~ioo+c’

where ¢ > O and o’ should be chosen so that the path of integration with
respect to ¢ 1lles entirely 1n the domain of regularity of f(q,y,p). Here
the transforms are designated by the same letters as the origlnal functions,
the difference shown only in the arguments. The quantities Tlf(q,p) and
G (9, P) have been computed in [1] and are given by the formulas (here we
write down only the terms describing dirfraction)

Ky (—9) {qu<l> (—%) (ﬂ + —Z-)—l —

_ kg K(l) ((—1)k+1%> exp [(— 1" ql v. p. OSO .. OSol'I(l)k © x
Q Y .
R lci S T~ Mo © e (Ko () (o 4+ 1) 1+(2 3)

+ 2 Ko (0% Dyexp (=" § oo (g @ x
k=1 p Y Y
a9 [ {Tuf (¢ )/ uy @) for =1
G+ G+ 0 q/pl 7 o @p /v ®  for 1

X

f
oo
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Here
§= (Cl! C21 ey Ck)y th = dCl PR dék
. 2.4
, L ) .
Iy () = EITLU) (&) [ . Z—](i—g—ﬂ—l 6’2“1} ¢ 2P
1=2 -
2(r — (s 20 —
Ky () = KV%_;) #O, K, (0) = Kl_“(_:H_:) (810 (2.5)
1
1 2y 01 roq
g (o) = ~—n—g tan—! |:<1 — %) <-§—z — 1>:l E:c—g (2.8)

The square roots in the above expressions are uniform by taking the branch
cuts in the g-plane along the segments of the real axis [+ y, + ») and choos-
ing the branch which 1is positive for ¢ = 0 . The functions M, (o) and
LU)(O) are defined only for real values of ¢ andlare: 0

‘ Ky (@ — i0)
M, (0) = Re K ;) (0 — i0), L, (o) = Im'm— 2.7

Although Expressions (2.3) are already quite complicated, 1t makes sense
to complicate them some more in order to ascribe a clear physical meanlng to
each term, With that purpose in mind let us present the functions Iq” (o)
as sums L(l)p (o) + L(l)s (o), where ’

o Vo —12(1 412

Luw ©= 370+ o = 17 (r + 0) ¢ 2% (6>}
© =)V 1 (1) gy
Lop @ ="3drmer—7 ¢ " ° (6> (2.8)
_ 0=V T U+ g ©>1)
Loe ©O= —gi@+ Mo —y1 ¢
AVE—10+1
Lo O =3(a T me—wadFo° (o>1)
Lip© =0 (<1, Ly, (@) =0 (0<1j
Now we can put II;, into the form
Doy = 2 Iy e (2.9)
(r)

where (r) is a composite index which gives the sequence of indices p and
g of functions [ , contained in each term. For instance, when % = 3 we
have

Oitys (©) = Wipyppps + Tiyppss + Mitypeps™
+ Wepps + Miiypsss T Winyspss T Mnyssps T Mipyssss =
= a3 Ly, (&) Ly (82 Ly (o) (G 4 L) (G A L)t & 2Pl
+ w3 Ly, (6 Ly (Go) Liys (Go) Gy + L) (Lo + L)t &7 2PE Tty

.. + L L(l)s (€1) L(l)s (€2) L(z)s (23) (C1 + Cz)~1 (gz + ga)—l 3—213(5:+'Cg+ts)

It is easy to see that for any x the function II()r is made up of 2
terms. After the substitution of (2.9) into (2.3) &nd then into (2.1), the
potentials are expressed in the form of double sums, in which a definite
physical meaning can be ascribed to each term. Namely, the terms containing
k-fold integrals describe waves diffracted % + 1 times. The composite
indcx (r) of functions Iluxrmv contalned in the expressions under the inte-
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gral signs gives the past history of the wave described by the corresponding
term. For instance, the index Dss corresonds to a four-time diffracted
wave, which after the first diffraction was propagated as a longitudinal
(potential) wave, after the second diffraction — as a transverse (solenoidal)
wave, after third diffraction as a transverse wave and 18 now longitudinal
or transverse, depending on the potential expression in which the considered
term 1s contalned. Let us note that, according to (2.8), in the multiple
integrals taken with respect to the arguments of the functionsl, the inte-
gration should be carried out from 1 to o , whereas with respect to the
arguments of the functilons L(Uﬂ it should be from y to o , as before, The
terms with % = O represent a special case, since they describe not only
the diffracted waves but also those reflected from the strip, and the forma-
tion of a shadow as well.

From the form of Expressions (2.3) i1t can be concluded that two systems
of multiply diffracted waves are present. The first system contalns waves
vwhich were first diffracted at the left edge of the strip (terms in the first
braces in (2.3)), and the second system contains those which were first dif-
fracted at the right edge. There exists a simple relation between the two
systems, which 1s easlly established by applying theorems of the operational
calculus to Formulas (2.3) and (2.1). Namely, let f(z,y,t, ¥) be the poten-
tial of anyone of the multiply diffracted waves of the first system; the
analogous wave of the second system is described by the potential

—f(—=z, —y, t — 2§, —9) (2.10)
The above relation does not hold true for waves with % = O

3. 1In this section let us investigate the once-diffracted and reflected
waves, The transforms of potentials in thils case are given by Expressions

qu; (p) Ky, (—9) q
AV —r0 o <o )t @h
oy DT D (Y exp o — 1y v
u; M, O
+ [P2 V% Zg (+)(1/p) a <‘Z“>
sy @Ok (Y exp =0 - 1y VIR

(9, Y, p) = [—

[ny SO0
Y@y =8y gy Ko l— )+ (3.2)
a0 (p) K gy (— 9) o
[ A _ 2 __ a2y
L SIS Gy
[ us () My, (8) ‘)
. j}gn TE® ) <?_) +
qu; (p) My (8) i q j ‘ i
+p2 VPT_—q2 & -+ q/p) Ko <7> exp{— q— vyl Vpt— %

In computing the inversions of (3.2) and (3.1) it is convenient to trans-
fer to a particular case, in which
W= Ud (@ —9 (@ + 1) + dy), b=Vt — O (z+ 1) 1 dy) (3.3)
Here one should distinguish the symbol of the delta functlon from the con-
stant which enters its argument. This inconvenience 1s caused by the fact
that the designations adopted in [1] are used 1n the above expressions, The
constants [,, V, and & depend on the angle of incidence and the type of
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wave and are:
Uy = —1t, V=0=Vy — 9 (3.4)
for the case of a longitudinal wave, and

Uy =8 =V1 =92, v, =0 3.5

for a trunsverse wave, The potentlals corresponding to this partlcular case
will be designated by capltal letters ¢ and ¥ , One can transfer to the
general case, in which

wp= U (0 =9 (@ + 1) + dy), v =Vif ¢ — 8 (@ + 1) + dy) (3.6)

by means of Formula .

v@u )=\ 0@y t—nr@a @3.7)
Q
and analogously for Y .,
Let us start with the computation of ¥{x,y,t). After the substitution

of {3.2) into {2.2) we obtain a linear combination of four inversion inte-
grals., Conslder one of them

ioo+c io0+¢" ——
J= L S (P S exp{q(z+1)—iﬁyl Vo — Cik, (_ L)dq dp
A ~t00+C —~too+e” p(g =+ 0p) 4
Here we set ¢ =0, ¢ = po. , Then (3.8
t ioo+c R~
J:J—Sd'r S emS eXP{P[5($+1)“~|y|V1—‘°a]}K(n(_c)dcdp
42 . ¢+ O
[} —ico+e Hp)

where 1{P) is the contour in the complex g~plane, which corresponds to the
imaginary axis of the ¢=~plane, Now we set , = O and decompose the integral
with respect to into a sum of two integrals: from — ¢» to O and from
0 to l» . We obtain

t 100
_ 1 expiplv+o{z+ 1) —ly| Vi—0o] _
J~R§d«:{g dp§ e Ky (—0) ds+

0 N
+ (oo [t+o(wji};lyll/1—°”1} Ky (— o) do}

-{00 ly

where 1, and 1; are the contours shown in Fig. 2., The same figure shows
the branch cuts golng from —y to — o
and from 1 to o , {(Let us remember,

that the function K, (— 0) is regular LT TS
everywhere, except on the segment of the e mas ™y
real axis [-y, —«))., If the order of {/ N
integration could be interchanged, the oL \
Ea %
L " .
imé \r\'_—ﬁr +y IREG
{, l {, o N ‘ /f
t Vd
~ e

- e S
I f I8 Re g - -

Fig. 2 Fig. 3

integral with respect to P would be elementary. To make that possible,
the contours !, and 1, should be deformed so that
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Im [t+ 0 (z + 1) —lyIV1 — 02

be positive on 1, and negative on 1Il,. It turns out that this can be accom-
plished by shifting the points of Intersection of both contours with the real
axls to the point o = — (x + 1)/r , where r = ./{x + 1)%+ 1. If (x+1)/r> 1,

then in deformi the contours one should add the residues at point ¢ = — 9
and for {(x + 1)/r > y also add the integral taken along the edges of the
branch cut from -0 = —y to ¢ =— (x + 1)/7 . Then the integral (3.8)

takes the form
J=—H@ @+ ) —NHE—0G+ 1) — |yl Vi—09) M, ® +
(x+1)/r
+% H{Fl@+1)—1H(E—1 v. p. S H(@t—o(x+1)—|y] Vi—o®)x

(1)
X ﬂ

1 t K, (—0) do 3.9
do — = S dt (1)
- i s win@+o)lt+o@+1) —ly|Vi—e

Here #{r) 1s the Heaviside's unit step function. We wrlte the symbol
of principal value in front of the integral 1n the second term to take care
of the possible case ¢ > 7,

Moreover, as in [1],
Ny ©) =Ly © Ky (—0)

Let us now consider the last term. The contour (1,’— 1,’) 1s shown in
Fig.3. We close 1t in the upper and lower half-planes by semlicircles of
infinitely large radil, as shown schematically in the flgure, and thus reduce
the integral with respect to ¢ to a sum of resldues at the poles.

c=o02=r[—t(@4+1) +ilyl Ve —r

bearing in mind that these poles fall inside the integration contours only
for ~>r .

Thus, the last term (3.9) becomes
i —
__'I_S{K(l) (—o) V1 —612+K(1) (—oy) V1 —022} dt
ZA 4 4 o, 4 + o2 Vi _ 5

Since the terms in braces are complex conjugate, the expression under the
integral sign 1s real, and the 1ntegral (3.8§ 1s reduced to quadratures.
However, for obtalning the asymptotlc expansions 1n the nelghborhood of the
wave fronts, 1t 1s convenient to transfer the last expression again to a cer-
tain contour integral in the g-plane. This is accompllished by a simple
change of variables. Flnally, we obtaln

J=—H@l @+ 1)—OHE—%@+1)—|y|V1I—-9) M,  +

{x+1)/r
1 x4+ 1
—}-?H(T__T)H(r —Hvp § H(t — o (z+ 1)—

Ny 1 ¢ K4 (0)do
-—|y|V1—02)F‘1’_—odo—2—m§ g H &) (3.10)
£

Here [, 1s the contour passing from point

e=r2lt@@+)—ilyl Va7
to point 6 =r2[t(x -+ 1)+ i|y]| ¥V # — 3] and intersecilng the real axls at
o=rtl(z+4 1).
The remaining three integrals which appear in the expression for Y are
analogous to (3.8). Thus
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sgnyU; 1 — T 1‘)
Y (x, y, t) = Re “;)‘;j V1 g VFT:‘) H(COS(I G H (b
— B — |y V1 =0 H (cosat + ) + (3.11)
sgny UK  (— DK, {0 V1 =06 —~VK, (—HK, (&
+~——11(r—— ‘9& g i w@V Bl @ (©) do 4
Ly~ @ —0) V1 —o
1 sgn yU M, (mx(l,(c)]/ T=6 + ViM ) (8) Ky, (5) &
+ g H (¢ — 1) S T
L+ 5y Y1l —¢
cosa—

+ "%E‘ H(r-—t) H (cos a—— y) H (cos a* + 1) v. p. S H(t — ot —
Y
sgny UiK ) (=) Ny 0) VI—=0F — VK, (— 8) Ny (@) 0
@ Vi 9 4

cosat
+.i.f1(;»+ — ) H (cos a- + 1) H (cos a* — T) S H (t — ob+ —
Y

sgny UMy 8) Ny (0 VI—0* + VMg (8) Ny, (0 s
®+0) V1—ot

Analogously, for &{x,y t) we obtain Expression

U6 - sgn oV, Vi — 42

4 YV1I—8 Y00

—lylVi—ob)

—ly1 V1=09

® (z, y,t) = Re H (v cosa™ — 9) H (7 cos a* +

+ O H (@ — 0 — |y |V — 09+ (3.12)
1 ~ UiK(l) (— B K(l) (0)G+sgnyViK(2, (— B K(Z) (o) V"{2 — g
+a H{E—1r )LS_ P Vo do -
p e
UMy, ) Ky ©0) 0 — sgny VM (8) K 0) V1F — 0
ol @ =) L§,+ ®+o) Vii—o 4

The following designations have been introduced in Formulas (3.11) and

(3.12): R
=120 E=rcesa=z+1 r=VERFP
trerteosat =1 —z, rt=V(E) 4
the contour [,” passes from point o= (r)2(E — i|y| VE -1 () to
point 4 — (,-—)~2 (& + iy Vi )2} intersecting the real axis at
O=7 ¢0s u”, the contour [,  has been defined above, and the contours L’

and 1,* are determined in the same way as L~ and £,”, but in terms of
quantities designated by the sign *.

Now 1t is easy to establlish the physical meaning of each term in Expres-
sions (3.11)} and (3.12). The first term describe the reflected longitudinal
and transverse waves for y > 0, anc for y < 0 they cancel the incident
wave, thus securing the formation of the geometric shadow. The next two
terms in the expresslons of each potential describe cylindrical waves dif-
fracted at the left and right edges of the strip., We will symbolically desig-
nate those waves by 1ip~, tp*, 18 and 1s". (The symbol p indicates lon-
gitudinal {(potential) waves, symbol 8 — transverse (solenoidal) waves)., The
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last two terms in (3.11) represent the potentlals of the head waves. Those
will be designated by t¢e~* and te**. Fig.4 shows the location of fronts
of all those waves for the time interval 20 <t L 2y.

4, Expressions (3.11) and (3.12) completely describe the diffraction for
O< t < 2y , 1.e. up to the instant at which the wave front {p~ reaches the
right edge of the strip. At that
instant the waves ip~pt%, ip~st, ip—st¥
appear. In the designations of mul-
tiply diffracted waves the sequence
of indices is determined by the wave's
history: the index { deslgnates the
incident wave, lndices P and s
with the = or * sign designate dif-
fraction at the left or rilght edge
of the strip, respectively; the aster-
isk at the index g designates the
head wave. Clearly, the index with
an asterisk can appear in the last
place only, whereas the indices with
" or * signs alternate. Hence, it is
sufficlent to show which of the two
indices with ~ or * signs follows the
incldent wave 1lndex, 1.e. instead of

"p*s” or 1ip*p e* we will write
tp"ps or ip*ps . In the general case we will write t(r)s, t(r*)s or
1 r')p . PFormula (2.10) of Section 2 gives a simple relation between the
potentials of waves ¢(r)p, t(r")e and ¢(r*)p, t(r*)e . We should note,
however. that the substituting ‘& for —9 one should write M ”(ﬁ)instead
of K ”(—*ﬂﬁ,and vice versa. Therefore, we will confine ourselves éo the com-
puta%lon of wave potentials for i(r-)p, i(r-)s and i(r-)s*. From (2.1}, (2.3)
and (?.9 we obtain the expression for the transform of the wave potential
of t{r7ip i

Fig. 4

qu; (P) q P
= I:;Z—V?P——z——__—FK(U ((*1)}”1 _’j') exp [(— 1)" ¢] v. p. A(Sr) X
a9 v; (p) k1 9
*Maew O C 5, — F grp Y T @ (1) x
% exp [(—1)* ¢] v. p. S I () ki }X
8y PO —8) (5 — (—1* e/ p)
x exp{— |y | V1?0 — ¢*h (4.1)

where % + 1 1s the multiplicity of diffraction, A(r is the domain of
integration which is determined as follows: 1if in the’ composite index (r)
the j-th place 1s occupled by the index p , the integration will respect to
¢, 1s carried out from y to o , otherwise 1t is from 1 to = .

It is easy to verify that in the process of inverslon it 1s permissible
to perform integration under the multiple integral sign without restrictions.
Moreover, the resulting integrals are again of (3.8) type, and thus we obtain
(again for the case in which the incident wave has the form (3.3))

Oy mi™ 6 S Ky (0)ods

(2,9, 1) = [ (—)* Ky (=0) v. p. —35 = dQU; —
[ (Sr)p & L, G+ Vi —ot
g i® (B) K, (o) do 1
— sgn yK ) (—0) V. p. s ) éi) o 49 iJga- (4.2)

Ar)p Lkp
where A(”p 1s the domein of integration determined by conditions

k ——
App C Ay =t —2 21 L > 1 re=VEET ¥ & =1+ (—1D"2)
i=
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The contour Ly, in the o-plane 1is defined in terms of ¢,, €,, r, in the
same way as the contour - in (3.12) was defined in terms of ¢, £ and r,

and also K
5 e 8 = Hy e €) exp {217 E §g} (4.3)
s}

i.e. 1t 1s obtained from 1l . by discarding the exponential factor. The

condition Amp - A(,,) can be written down in the form

o

. {‘Zy‘“ =T, if p appears in fth place in (r)
T \Z, = 1, if e appears in Jth place in (r)

nj o

Suppose the index p 1s contained in (r) m times, and the index & (x—n)
times. Then, as we readily find, the wave t(r~)p appears when ¢ = 2ny +
+ 2{k — m), as should be expected from kinematic considerations., For the
potential of the wave {¢{(r-)s we obtain

WMmWﬂwﬂwmbmup\
Ay
{ris

Hepop () \ K ©@odo } i

Go— 9 P V—i":?z(z_;k+5) “L | 2;

50 ) G 49, —

iy (8) \ Ky (0) do
s

i

— (w-l)"'ViA'(m (— 0y v. p. S (4.4)

Ars

(rps

and the expression for the potential of the wave {{r )a* 1s
i

1 / l'
W,y ) = — H Kr,‘. — ¢ 2 _\__‘J gjn> H (cos o, — ) H{cosa, ;+7) X
Je=1
* COsap.
' ) o LI PP Ny (0) do
e [5}:1; YR, (= 8) Uyve p \ _W & I (3,) m“{;}— sz —  (4.9)
Bp ¥ i
I * )(}OSc{k ( )
: Sk . N oy (0) Odo
S T | (2)(r)# Moy o ]
(—DF Ky (= O Fyvop | 5 700 e 1o 4%
(r)p
where .
g]f e
cosa;‘.=-;];, X = tk——of,k——-iy§l/1 — g2 (4.6}

the contour 1., 1s defined in terms of ¢,, §,, r, analogously to the con-~
tour I,”, and the domain of integration LS*, is determined by conditions

A(r)s « A(r)' 1 > "k @7

The reasons for the appearance of the factor p#(cos Qg+t v} in Expression
24.53 are not obvious. Indeed, in the inversion of the xth term in Formula
2.3) there appears a term which is due to the residue at point ¢ = {, and

which is different from zero only for ¢o8 g,< — {,

After some transformations it becomes clear that this term cancels the
head wave which has appeared after the diffraction of the opposlte edge of
the strip, in the region shown hatched in Fig.5, and should be referred to
{x — 1)th term, while on analogous item from the (¥ + 1)th term should be
added to the kth potential. The appearance of analogous factors in the
potentials of the head waves in Formula (3.11) is due tu trasfer of analo-
gous factors from the terms with % = 1

5, To describe the disturbances arising as a result of motlon of the
strip one could proceed from formulas for transforms (analogous to Formula
(2.35)) from the paper [1], but there is a shorter way avallable. Indeed,
from the form of the boundary conditions {1.2) we can conclude that the dis-
turbances generated by the translation of the strip must be the same as in
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the case of diffraction of a longitudinal incident wave with the displacement
v; = —v(t —vy) and a transverse incldent wave with the displacement
u;= —u{t —y)  both falling normally upon
the fixed strip. It 1s clear that the num-
ber of individual waves generated in trans-
lation of the strip is identical to that
arising in diffraction at the fixed strip.
1t is easy to transfer from formulas describ-
ing potentials of waves arising in the dif-
fraction of a wave of form (3.3) to the
potentials of corresponding waves generated
by the strip's translation

t

Qo (x, ¥, 1) = ———S [ug (¢ — ) @1 + vy (2 — 1) Dyldr
0
0= (Dl(:c, Y, T, Ui = 1, Vi. = 0, 4 = 0)
O=Qu(z,y,7; U, =0, V; =1, 8 =0)] (5.1)

and analogously for potentials of transverse
Flg., 5 waves.

In order to transfer from formulas
describing the diffraction of waves (3.3) of the fixed strip to those describ-
ing the disturbance generated by the strip's rotation, 1t 1s sufficlent to
introduce the derivative with respect to the parameter ¥. Then, 1t is
easy to verify that the corresponding expressions for the potentials must
be of the formt

t-7

Py = S{[a%@ (,y, ;Ui =0, V=1, ‘”]s:o g a (1) d-rl}d'c +

0 . 0
+(1—xo)ga(t—f)¢(x,y,r; U;=0,Vi=1, ¢ =0dr

0

We will not dwell on the question of these waves in more detaill, since
near the wave fronts they are asymptotically small as compa.ed to the dif-
fracted waves (namely, as 1s readily seen from formulas for the strip's dis-
placement and rotation in [1], the discontinulties of these waves at the
wave fronts, as compared to the discontinultles of the diffracted waves at
the wave fronts are lower by one order of magnitude for the case of the right
angle of 1lncidence (4= 0), and by two orders of magnitude in other cases
(for & == 0)).

The formulas obtalned in Section 3 to 5 are cumbersome and inconvenlent
for practlcal applications. Therefore, 1t would be expedient to obtain
asymptotlc expressions describing the diffracted waves near their fronts and
at large distances away from the strip. However, for that 1t would be neces-
sary to investigate a great number of particular cases whish would be beyond
the scope of the present paper.

We would like to point out that a closely related problem of the formation
of a crack having the shape of a strip, in a prestressed elastic medlum has
been considered by Flitman [2].
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